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Abstract

The SSH protocol provides secure access to network ser-
vices, particularly remote terminal login and file transfer
within organizational networks and to over 15 million servers
on the open internet. SSH uses an authenticated key exchange
to establish a secure channel between a client and a server,
which protects the confidentiality and integrity of messages
sent in either direction. The secure channel prevents message
manipulation, replay, insertion, deletion, and reordering. At
the network level, SSH uses the Binary Packet Protocol over
TCP.

In this paper, we show that as new encryption algorithms
and mitigations were added to SSH, the SSH Binary Packet
Protocol is no longer a secure channel: SSH channel integrity
(INT-PST, aINT-PTXT, and INT-sfCTF) is broken for three
widely used encryption modes. This allows prefix truncation
attacks where encrypted packets at the beginning of the SSH
channel can be deleted without the client or server noticing it.
We demonstrate several real-world applications of this attack.
We show that we can fully break SSH extension negotiation
(RFC 8308), such that an attacker can downgrade the pub-
lic key algorithms for user authentication or turn off a new
countermeasure against keystroke timing attacks introduced
in OpenSSH 9.5. Further, we identify an implementation flaw
in AsyncSSH that, together with prefix truncation, allows an
attacker to redirect the victim’s login into a shell controlled
by the attacker.

We also performed an internet-wide scan for affected en-
cryption modes and support for extension negotiation. We
find that 71.6% of SSH servers support a vulnerable encryp-
tion mode, while 63.2% even list it as their preferred choice.

We identify two root causes that enable these attacks: First,
the SSH handshake supports optional messages that are not
authenticated. Second, SSH does not reset message sequence
numbers when activating encryption keys. Based on this anal-
ysis, we propose effective and backward-compatible changes
to SSH that mitigate our attacks.

1 Introduction

Secure Shell (SSH). While TLS is commonly used to se-
cure user-facing protocols such as web, email, or FTP, SSH is
used by administrators to deploy and maintain these servers,
often with high privilege (root) access and a large attack sur-
face for lateral movement within an organization’s infrastruc-
ture. SSH was developed by Tatu Ylonen in 1995 as a secure
alternative to telnet and rlogin/rcp and has since become a
critical component of internet security.

In 1996, SSHv2 was developed to fix severe vulnerabilities
in the original version. In February 1997, the IETF formed
the SECSH working group to standardize SSHv2. After a
decade, it published five core RFCs [29–33]. SSHv2 provides
cryptographic agility and protocol agility without breaking
backward compatibility. Since its original release, dozens
of standardized and informal updates to the protocol have
been published. Because of this, SSHv2 remains relevant
after 25 years without major redesign, but it has also become
difficult to analyze. There is a significant risk that these
extensions of SSH interact to undermine its security goals.

SSH Connections. An SSH connection between a client
and a server begins with the Transport Layer Protocol [33],
which defines the handshake messages for key exchange and
server authentication and how messages are exchanged over
TCP using the Binary Packet Protocol (BPP). After the hand-
shake, SSH provides a secure channel1 for application data.
At the application level, the client chooses a sequence of ser-
vices to run. In practice, the client will run precisely two ser-
vices: the Authentication Protocol [30] for user authentication
with a password or public key, followed by the Connection
Protocol [31] for the bulk of SSH’s features like terminal
sessions, port forwarding, and file transfer.

1We note that by channel, we refer to the integrity-protected, encrypted
byte stream at the transport level, not the SSH data channels from the con-
nection protocol. Multiple SSH data channels can be multiplexed over the
same secure transport channel.
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Figure 1: Typical SSH handshake using a finite-field Diffie-
Hellman key exchange. Included sequence numbers are im-
plicit and maintained by the BPP. Snd denotes the counter for
sent packets and Rcv for received packets. Sequence numbers
verified using authenticated encryption are in bold.

1.1 SSH Channel Security
In this work, we focus on the integrity of the SSH handshake
and the resulting secure channel, as shown in Figure 1. Af-
ter an initial exchange of version information directly over
TCP, the BPP exchanges packets, each containing precisely
one message. Initially, the BPP is used without encryption
or authentication for the duration of the handshake until the
NEWKEYS message. Afterward, the encryption and authenti-
cation keys are used to form a secure channel, intending to
protect the confidentiality and integrity of the ordered stream
of all following messages. Note that technically, the secure
channel consists of two separate cipher streams, one for each
direction, and that the order of message arrival is only guar-
anteed for each direction separately.

Message Authentication Codes. As SSH is an interactive
protocol, the integrity of each packet must be verified when it
is received so that it can be promptly processed. For this, the
BPP appends a Message Authentication Code (MAC) to each
packet. A cipher mode and a MAC form an authenticated
encryption scheme [5]. SSH historically uses Encrypt-and-
MAC (EaM), where the MAC is computed over the plaintext,
but this is vulnerable to oracle attacks [2]. Later, Encrypt-
then-MAC (EtM) was added, where the MAC is computed
over the ciphertext instead. SSH has recently adopted the
AEAD ciphers AES-GCM and ChaCha20-Poly1305, where
ciphertext integrity is built into the encryption scheme [43].

A Trivial Example: Suffix Truncation Attacks. Note that
a per-packet MAC cannot fully protect the channel’s integrity,

as packets are verified and decrypted before the end of com-
munication has been seen. This allows for a trivial suffix
truncation attack, where the attacker interrupts the message
flow at some point during the communication. This is an
inherent limitation of interactive protocols and an accepted
trade-off in the design of SSH, but also, e.g., the TLS Record
Layer. Although this attack cannot be prevented, it can be de-
tected by requiring “end-of-communication” messages as the
last messages in both directions. TLS defines a “close_notify”
alert for this purpose [42]. Although SSH also defines a DIS-
CONNECT message to indicate the end of the secure channel,
this message is optional, unidirectional, and not described as
security-critical in the standard.

Implicit Sequence Numbers. If the MAC was only com-
puted over the payload of each packet, an attacker could still
delete, replay, or reorder packets. Therefore, a sequence num-
ber is included in the MAC computation, corresponding to the
position of the message in the stream. Each peer maintains
two counters (starting at 0), one for each direction. The Snd
counter is incremented after a packet has been sent, and the
Rcv counter is incremented after a received packet has been
processed. Once the secure channel has been established, the
current value of Snd is used to compute the MAC of an outgo-
ing packet, and the current value of Rcv is used to verify the
MAC of an incoming packet. If packets in the secure channel
are deleted, replayed, or reordered, the sequence numbers get
out of sync, and MAC verification will fail.

Because TCP is a reliable transport, accidental reordering
of SSH packets cannot occur on the network. Thus, SSH (like
other TCP-based protocols) uses implicit sequence numbers
that are not transmitted as part of the packet.

Security Guarantees of Secure Channels. For TLS, the
security guarantees of the Record Layer were formalized as
stateful length-hiding encryption [39], with the state mainly
consisting of the implicit sequence number. The security
of the BPP and implicit sequence numbers was analyzed by
Bellare et al. in [4] and later refined and extended by Paterson
and Watson [40] and Albrecht et al. [1]. These works define,
in slightly idealized scenarios, the following informal security
goal for a secure channel:

When a secure channel between A and B is used,
the data (or message) stream received by B should
be identical to the one sent by A and vice versa
(INT-PST, aINT-PTXT in [17]).

Within their idealizations, all three works confirm that the BPP
is indeed a secure channel. The difference between the models
is that Paterson and Watson [40] also included the encrypted
length field of the Encrypt-and-MAC modes, while Albrecht
et al. [1] considered the more recent cipher modes ChaCha20-
Poly1305, AES-GCM, and generic Encrypt-then-MAC. Our
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attacks show that the models underlying the proofs in [1] are
only partially accurate. We will explain the discrepancies
between the proofs and our findings in Section 2.

1.2 Overview of Our Attacks on SSH
In this paper, we show that SSH fails to protect the integrity of
the encrypted message stream against meddler-in-the-middle
(MitM) attacks. More precisely, we present novel prefix trun-
cation attacks against SSH:

We show that the SSH Binary Packet Protocol is
not a secure channel because a MitM attacker can
delete a chosen number of integrity-protected pack-
ets from the beginning of the channel in either or
both directions without being detected (Figure 2).

Attacker Model. We consider a MitM attacker who can
observe, change, delete, or insert bytes at the TCP layer. We
do not assume that the attacker can break the confidentiality
of the session keys, i.e., the attacker has no information about
the derived encryption keys, MAC keys, or IV. However, we
do assume that the attacker can determine the length of the
messages to be deleted even if the length field is encrypted.
We discuss the practicality of this in Section 4.3. The rogue
session attack presented in Section 6.2 further assumes the
attacker has an account on the same host as the victim.

As for the connection, we assume that the server is correctly
authenticated (i.e., the client recognizes the server’s host key)
and that a vulnerable encryption mode has been negotiated.
See Table 1 for a list of vulnerable encryption modes.

Prefix Truncation Attacks. While our attacks on SSH are
novel, the idea of prefix truncation attacks against network
protocols by sequence number manipulation is not. To the
best of our knowledge, the first and only description of such
an attack is by Fournet (on behalf of miTLS) in an email to
the TLS working group in 2015, targeting a draft version of
TLS 1.3 [18]. Fournet’s attack increases sequence numbers in
TLS by message fragmentation rather than message injection
and remains theoretical, as “prefix truncations will probably
cause the handshake to fail.” Subsequently, the draft was
modified, and no prefix truncation attacks against the final
version of TLS 1.3 are known. In contrast, we present the first
real-world, practical prefix truncation attack against a mature,
widely used protocol.

Root Cause Analysis. Our results depend on two technical
observations about how SSH protects the integrity of the
handshake and channel:

1. SSH does not protect the full handshake transcript. Al-
though server authentication uses a signature to verify
the integrity of the handshake, the signature is formed
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Figure 2: A novel prefix truncation attack on the BPP. The
server sends SC1 and SC2, but the client only receives SC2.

over a fixed list of handshake messages rather than the
complete transcript. This gap in authentication allows
an attacker to insert messages into the handshake and
thereby manipulate sequence numbers.

2. SSH does not reset sequence numbers at the beginning
of the secure channel. Instead, SSH increases sequence
numbers monotonically, independent of the encryption
state. Any manipulation of sequence numbers before the
secure channel carries over into the channel.

Based on these two key observations, we present a series of
novel attacks on SSH that increase in complexity and impact.

Sequence Number Manipulation. We show that an at-
tacker can increase the receive counters of the server and the
client by inserting messages into the handshake. Although not
required for any of our attacks, we also show that, for some
implementations, an attacker can fully control the receive and
send counters, setting them to arbitrary values (Section 4.1).

A Prefix Truncation Attack on the BPP. An attacker can
use sequence number manipulation to delete a chosen number
of packets at the beginning of the secure channel. Neither
the client nor the server detects this prefix truncation, conse-
quently breaking the channel integrity of SSH (Section 4.2).

Extension Negotiation Downgrade Attack. As a practi-
cal example, we show an attack that uses prefix truncation
to break extension negotiation [9], thereby downgrading the
security of the connection. The attacked client might mistak-
enly believe that the server does not support recent signature
algorithms for user authentication or does not implement cer-
tain countermeasures to attacks (Section 5.2). Specifically,
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the attacker can turn off protection against keystroke timing
attacks in the recently released OpenSSH 9.5.

Rogue Extension Attack and Rogue Session Attack. As
another example, we show two attacks on the AsyncSSH
client and server. In the first attack, the victim’s extension
info message is replaced with one chosen by the attacker
(Section 6.1). For the second attack, the attacker must have a
user account on the same server as the victim. The attacker
injects a malicious user authentication message so that the
victim logs into a shell controlled by the attacker rather than
the victim’s shell, thereby giving the attacker complete control
over the victim’s terminal input (Section 6.2). These attacks
combine prefix truncation with implementation flaws in the
AsyncSSH library.

Limitations. Our attacks critically depend on the SSH en-
cryption mode negotiated between the client and the server.
The attack works best with the AEAD cipher ChaCha20-
Poly1305 (added in 2013). The attack also works with any
EtM mode (added in 2012), although the success probability
depends on the cipher mode negotiated. CBC-EtM can be ex-
ploited with a significant probability, while the exploitability
of CTR-EtM is low. On the other hand, CBC-EaM, CTR-
EaM, and GCM modes are not affected. See Section 4.4 for a
complete analysis.

In an internet-wide scan, we show that despite these lim-
itations, 71.6% of all SSH servers on the internet support
an affected encryption mode, and 63.2% even list it as their
preferred choice (Section 7).

1.3 Our Contributions
We contribute the following novel results:

• An analysis of the integrity of SSH channels, where we
identify two previously unknown flaws in the SSH spec-
ification, namely gaps in the handshake authentication
and the use of sequence numbers across key activation.

• A novel prefix truncation attack on SSH channel integrity,
where we show that an attacker can manipulate the se-
quence numbers and delete several messages from the
beginning of the secure channel.

• A first security analysis of SSH extension negotiation, in-
cluding a novel downgrade attack that disables extension
negotiation completely. Thus, support for some public
key signature algorithms or, with OpenSSH 9.5, protec-
tion against keystroke timing attacks can be disabled.

• As a practical demonstration, two novel attacks on
AsyncSSH. First, a rogue extension attack, where the at-
tacker can insert a chosen extension negotiation message.
Second, a rogue session attack that allows the attacker

to log the victim into an attacker-controlled shell. Both
escalate implementation flaws in AsyncSSH using the
prefix truncation attack.

• An internet-wide scan with up-to-date information on the
distribution of SSH encryption modes and extensions.

Artifacts. Proof-of-concept implementations for our attacks
and the aggregated results of our internet-wide scan are avail-
able under the Apache-2.0 open-source license. See:
https://github.com/RUB-NDS/Terrapin-Artifacts

Ethics Consideration and Responsible Disclosure. We
disclosed our findings to 33 vendors of SSH implementa-
tions, including OpenSSH and AsyncSSH, in October and
November 2023, followed by a public disclosure on Decem-
ber 18th, 2023. As of February 2024, 28 vendors have pub-
lished patches implementing a backward-compatible counter-
measure proposed by OpenSSH. The general protocol flaw
has been assigned CVE-2023-48795 (CVSSv3 5.9), while
the implementation flaws in AsyncSSH were assigned CVE-
2023-46445 (Rogue Extension Negotiation; CVSSv3 5.9) and
CVE-2023-46446 (Rogue Session Attack; CVSSv3 6.8). To
estimate the adoption rate of the countermeasure, we scanned
the IPv4 address space on January 5th, 2024, indicating that
more than 3.4M servers were patched.

We provide an opt-out option and an email address for
inquiries about our internet-wide scans. Additionally, we
employ a block list to exclude networks that opted out of pre-
vious scans. Scan results are solely published in aggregated
form, without any information that could identify individual
servers or networks.

2 Related Work

Secure Channels. In 2001, Canetti and Krawczyk [12] es-
tablished the first model for secure channels, which only re-
quires protection against adversarial insertion of messages.
Paterson et al. [39] defined stateful length-hiding authenti-
cated encryption (sLHAE) to model the TLS record layer as a
secure channel. This definition was used in [23, 24] to define
authenticated and confidential channel establishment (ACCE)
to analyze the TLS handshake and record layer as a whole.
Bellare et al. [4] used stateful authenticated decryption to
define a security notion for SSH that is directed against replay
and out-of-order delivery attacks (INT-sfCTXT). Paterson
and Watson [40] later refined this work to cover buffered de-
cryption (INT-BSF-CTXT). Albrecht et al. [1] further refined
and extended this definition to cover ciphertext fragmenta-
tion attacks more generally (INT-sfCTF). Generalizing the
work on TLS and SSH, Fishlin et al. [17] defined, among
other notions, plaintext integrity for generic data and (atomic)
message streams (INT-PST, aINT-PTXT).
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Our attacks show that SSH BPP, when instantiated with
ChaCha20-Poly1305, CBC-EtM, or CTR-EtM, does not pro-
vide integrity of plaintext or ciphertext (message) streams
(INT-PST, aINT-PST, INT-sfCTF) as defined in [1, 17].

Truncation Attacks. Suffix truncation attacks against web
services using TLS have been demonstrated by Smyth and
Pironti in [44]. A prefix truncation attack against a draft
version of TLS 1.3 was described by Fournet (on behalf of
miTLS) in an email to the TLS working group in 2015 [18].
Fournet’s attack increases TLS sequence numbers by mes-
sage fragmentation rather than injection to avoid breaking
handshake authentication. The attack remained theoretical
as “prefix truncations will probably cause the handshake to
fail.” As a countermeasure, the draft was changed back to
reset sequence numbers to 0 when activating keys.

Attacks on SSH. The most severe attack on SSH was pre-
sented by Albrecht, Paterson, and Watson [2] in 2009. It
exploited the encrypted length field, using the length of the
ciphertext accepted by the server from the network as a de-
cryption oracle for parts of a ciphertext block. In [40], this
peculiarity of the BPP was formalized, and in [1] a variant
of this attack was presented. Other attacks on SSH include
a timing attack on SSH keystrokes by Song, Wagner, and
Tian [45], a theoretical attack on SSH CBC cipher modes by
Wei Dai [14], and a SHA-1 chosen prefix collision attack on
the handshake transcript by Bhargavan and Leurent [8]. The
weakness of some SSH host keys presented by Heninger et
al. [20] was caused by a lack of entropy and faulty implemen-
tations and is not an inherent weakness of the protocol.

Formal Proofs for SSH. The SSH handshake was analyzed
by Williams [47] and Bergsma et al. [7]. Bellare et al. [4]
presented a generic security model for SSH BPP, and Paterson
and Watson [40] a specific, more detailed one for CTR-EaM.
Albrecht et al. [1] included security statements for ChaCha20-
Poly1305, generic Encrypt-then-MAC, and AES-CTR in SSH,
claiming the indistinguishability and integrity of the cipher-
text. Careful analysis of their proofs reveals an essential
assumption about SSH sequence numbers that does not hold.
In particular, they assume that the sequence counters in the
stateful encryption scheme are initialized to 0 on both sides,
which is false for the cipher modes affected by our attack. This
assumption is not apparent from the paper, which omits the
pseudocode for the encryption schemes, but Hansen gives the
missing parts in [19] (Alg. ssh-ChaCha20-Poly1305-Gen
in Fig. 6.5 and Alg. ssh-fgEtM-Gen in Fig. 6.6 there). We
note that this assumption is also present in [4] (Fig. 4 there).

Cadé and Blanchet [11] used the formal verification tool
CryptoVerif [10] to prove the security of SSH server authenti-
cation and the secrecy of the session key in the computational
model. The secrecy of messages in the channel cannot be

shown due to the attack in [2]. However, they do mention that
due to a limitation in the design of CryptoVerif, it cannot keep
mutable internal states such as sequence numbers or counters.
In their model, the sequence numbers are passed explicitly
as arguments and are, therefore, under the attacker’s control.
The authors do not raise the issue of channel integrity. Other
computer-aided proofs of server authentication and secrecy
of the session key in the symbolic or computational model
can be found in [13, 25], which also do not consider the in-
tegrity of the secure channel. For an overview of the field of
computer-aided cryptography, see [3].

3 Background

SSH Handshake (Figure 1). To initiate an SSH connection,
both peers exchange a version banner. The Binary Packet Pro-
tocol (see below) is used from the third message on but with-
out encryption and authentication. In the KEXINIT messages,
nonces and ordered lists of algorithms are exchanged: One
list for key exchange, one for server signatures, and two (one
per direction) each for encryption, MAC, and compression.
For each list, the negotiated algorithm is the first algorithm in
the client’s list, which is also offered by the server.

In the KEXDHINIT and KEXDHREPLY messages, a finite-
field Diffie-Hellman key exchange is performed. SSH also
supports elliptic curves (ECDH) and hybrid schemes with
post-quantum cryptography (PQC) as alternatives. The server
authenticates itself with a digital signature as part of the hand-
shake. The signature is computed over the contents of the
previously exchanged messages in a specified order.

The Exchange Hash: A Partial Handshake Transcript.
In contrast to TLS, SSH uses only a selection from the hand-
shake transcript for authentication. The hash value computed
from this selection is called exchange hash H, defined as

H = HASH(VC || VS || IC || IS || KS || X || K),

where HASH is the hash function of the negotiated key ex-
change, VC and VS are the version banners of the client and
server, IC and IS are the KEXINIT messages, KS is the server’s
public host key, and K is the shared secret derived from the
key exchange. The value of X depends on the key exchange
and contains a composition of negotiated parameters (if any)
and the ephemeral public keys of the key exchange [33, Sec.
8]. Each field includes a length field defined by the encoding.

Although the exchange hash contains everything that may
influence the negotiation of algorithms or computation of
the shared secret, it excludes seemingly ‘unimportant’ mes-
sages or message parts, such as IGNORE messages and unrec-
ognized messages. This authentication gap allows a MitM
attacker to inject messages into the handshake.
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Sequence Numbers. Each sequence number is stored as a
4-byte unsigned integer initialized to zero upon connection.
After a binary packet has been sent or received, the corre-
sponding sequence number Snd or Rcv is incremented by one.
Sequence numbers are never reset for a connection but roll
over to 0 after 232 −1. As sequence numbers are responsible
for protecting against replay attacks, rekeying must occur at
least once every 232 packets [37, Sec. 6.1].

We illustrate the use of sequence numbers in Figure 1: Af-
ter the banner exchange, the counters Snd and Rcv are initial-
ized with (0,0) on both sides. During algorithm negotiation
and key exchange, sequence numbers are increased but not
used in any MAC computation or verification. Only after keys
are activated the secure channel is established, and sequence
numbers are used for MAC computation and verification. For
each BPP packet, the sequence numbers in bold must match
at both peers; otherwise, the BPP packet is rejected.

SSH Binary Packet Protocol. The BPP is used to encrypt
and authenticate messages. First, a message is prefixed by
a 4-byte message length and a 1-byte padding length. Then,
at least 4 bytes of padding are added to the message so that
the total length is a multiple of the block size or 8, whatever
is larger. On the secure channel, the packet is encrypted by
the cipher mode, and a MAC is added. The details depend on
the authenticated encryption scheme, which uses an implicit
initialization vector IVKDF derived from the session key.

CBC-EaM [33] (Figure 3a) is part of the original SSH spec-
ification. The MAC is computed over the implicit sequence
number and the packet plaintext. The IV of the first packet is
IVKDF, and IV chaining is used (i.e., the IV of packet i is the
last ciphertext block of packet i−1).

CBC-EtM [36] (Figure 3b) was added to OpenSSH in 2012.
Here, the packet length is not encrypted to allow checking
the MAC before decryption. The MAC is computed over
the sequence number, the unencrypted packet length, and the
ciphertext. The IVs are handled as with CBC-EaM.

CTR [37] mode was proposed by Bellare, Kohno, and
Namprempre [4] as a countermeasure to attacks on CBC with
IV chaining. IVKDF is used as the initial counter value and
incremented after encrypting a plaintext block. CTR can be
used with EaM or EtM, with identical implications for the
length field and MAC computation as above.

GCM [22] (Figure 3c) mode was specified by the NSA for
Suite B-compliant SSH implementations [21]. Here, cipher-
text integrity is part of the cipher mode. The length field is not
encrypted (solely authenticated) to allow verification of the
authentication tag before returning any plaintext. Internally,
GCM uses a 12-byte nonce that is initialized to IVKDF. The
nonce is split into a 4-byte fixed value and an 8-byte invo-
cation counter that is incremented by one for each message.
The sequence number is not used but is always offset by a
constant from the invocation counter.

ChaCha20-Poly1305 [34] (Figure 3d) was added to

OpenSSH in 2013, inspired by a similar proposal for TLS by
Langley and Chang [26, 27]. Here, two different encryption
keys for the length field and the packet payload are derived,
so the length field cannot be used as a decryption oracle for
the payload. The MAC is computed over the concatenation of
the two ciphertexts. Internally, the AEAD construction uses
the sequence number as a nonce for each packet.

We note that the SSH specification says that the length
field is encrypted [33, Sec. 6] and that the sequence number
is used for integrity checks [33, Sec. 6.4]. This is only true
for CBC-EaM, CTR-EatM, and ChaCha20-Poly1305. The
modes CBC-EtM, CTR-EtM, and GCM do not encrypt the
length field, and GCM also does not use the sequence number.

4 Breaking SSH Channel Integrity

In this section, we present a novel prefix truncation attack on
SSH. The basic idea is that the attacker injects messages into
the handshake to increase the implicit sequence number in
one of the peers and then deletes a corresponding number of
messages to that peer at the beginning of the secure channel.
Two key insights about the SSH protocol enable this attack:

SSH Does Not Protect the Full Handshake Transcript.
As detailed in Section 3, the exchange hash signed by the
server during the handshake only authenticates some parts of
the handshake transcript, while other parts are left unauthen-
ticated. This allows an attacker to inject messages into the
handshake, which cannot affect the key exchange but does
affect the implicit sequence numbers of the peers.

SSH Does Not Reset Sequence Numbers at the Beginning
of the Secure Channel. In SSH, sequence numbers are
only incremented and never reset to 0, even when the en-
cryption key changes. This allows an attacker to manipulate
the sequence number counters in the secure channel before
encryption and authentication keys are activated.

Comparison to Other Protocols. In IPsec/IKE, only a por-
tion of the handshake transcript is signed, but unlike SSH, se-
quence numbers are reset to 0 when encryption and MAC keys
are activated. In TLS, FINISHED messages are exchanged
at the beginning of the secure channel to verify the integrity
of the complete handshake transcript, and sequence numbers
are reset to 0 after installing new keys. The Noise Protocol
Framework fully secures the handshake transcript and uses a
nonce as a sequence counter that is initialized to 0 after the
handshake.

4.1 Sequence Number Manipulation
In this section, we first show how a MitM attacker can ar-
bitrarily increase the receive sequence numbers C.Rcv and

6



Packet Length Payload Padding
Sequence
Number

4 Bytes 4 Bytes 1 Byte

Padding 
Length

≥ 4 Bytes

ENCRYPT

MAC

Encrypted Packet MAC

(a) Encrypt-and-MAC [33] (diagram based on [2, Fig. 1]). The
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(c) Galois/Counter Mode [22]. The packet length is not encrypted
but authenticated as additional authenticated data (AAD). The se-
quence number is not used directly but is replaced with an invocation
counter of constant offset.
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(d) ChaCha20-Poly1305 [34] (diagram based on [41, Slide 39]). The
packet length is encrypted using a different key and authenticated
as part of the Poly1305 input. The sequence number is encoded as
an unsigned 64-bit integer to match the nonce length of ChaCha20.

Figure 3: Commonly used authenticated encryption schemes in the BPP of SSH.

S.Rcv in the client and the server during the handshake. This
will be the basis for our prefix truncation attack and its ap-
plications, allowing the attacker to compensate for messages
deleted from the secure channel.

Technique RcvIncrease (Figure 4a). A MitM attacker can
increase C.Rcv (resp. S.Rcv) by N while not changing any
other sequence number by sending N IGNORE messages to
the client (resp. server).

The correctness is evident from the fact that the SSH stan-
dard requires for IGNORE that “All implementations MUST
understand (and ignore) this message at any time.” [33, Sec.
11.2]. The intended purpose of this message is to protect
against traffic analysis, so it is considered a security feature,
although there is no benefit from it during the handshake
phase. We note that the attacker may also use any other mes-
sage type that does not generate a response.

Other Modifications of Sequence Numbers. In addition,
we found that an attacker can set the sequence numbers to ar-
bitrary values by using the rollover after 232 messages during
the handshake. These advanced techniques require that the im-
plementation allows handshakes with many messages, a large
amount of data, and a long operating time. We also require a
message that generates a response message but is otherwise
ignored. Conveniently, the SSH standard requires this for all

messages with unrecognized message IDs [38, Sec. 11.4]. Let
UNKNOWN be a message with an unrecognized message ID.

Technique RcvDecrease (Figure 4b). A MitM attacker can
decrease C.Rcv (resp. S.Rcv) by N while not changing any
other sequence number by sending 232−N IGNORE messages
to the client (resp. server).

A single IGNORE message is only 5 bytes, so it fits into a
single block even for a 128-bit block cipher. Sending 232 −N
such messages transfers ≈ 232 · 16B ≈ 69GB of data. Con-
sequently, this technique can fail on implementations with
timeouts or restrictions to the amount of data or the number
of messages transferred during the handshake.

Technique SndIncrease (Figure 4c) and SndDecrease (Fig-
ure 4d). A MitM can increase C.Snd (resp. S.Snd) by N
while not changing any other sequence number by sending N
UNKNOWN and 232 −N IGNORE messages to the client (resp.
server) and deleting all generated UNIMPLEMENTED mes-
sages. Conversely, a MitM can decrease C.Snd (resp. S.Snd)
by N while not changing any other sequence number by send-
ing 232−N UNKNOWN and N IGNORE messages to the client
(resp. server) and deleting all generated UNIMPLEMENTED
messages.

Here, the total data transfer required is ≈ 69GB for SndIn-
crease and twice as much (≈ 138GB) for SndDecrease. Again,
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Figure 4: Techniques for sequence number manipulation as a
MitM in the SSH protocol. All techniques can target either
client or server before the initial handshake concludes. The
MitM deletes all generated UNIMPLEMENTED messages.

these techniques may fail on implementations that have time-
outs or restrict the amount of data or number of messages
exchanged during the handshake.

Evaluation. We verified all techniques successfully against
PuTTY 0.79. Additionally, our experiments show that
OpenSSH 9.5p1 recognizes a rollover of sequence numbers
and terminates the connection, thus not affected by any tech-
nique but RcvIncrease. AsyncSSH 2.13.2 and libssh 0.10.5
allow for RcvIncrease but terminate the connection due to
handshake timeouts before any advanced technique concludes.
Dropbear 2022.83 disconnects on UNKNOWN messages in-
stead of responding with UNIMPLEMENTED but allows Rcv
to roll over, therefore being affected by RcvIncrease and
RcvDecrease only.

4.2 Prefix Truncation Attack on the BPP
Single Message Prefix Truncation Attack. We assume the
attacker wants to delete the first message SC1 sent from the
server (Figure 2). The attack takes two steps:

1. The attacker uses the RcvIncrease technique to increase
C.Rcv by one, e.g., by injecting an IGNORE message to
the client before NEWKEYS.

2. The attacker deletes the first message SC1 sent by the
server.

We first analyze this attack with regard to handshake au-
thentication and sequence numbers. As the key exchange does
not protect the handshake transcript from inserting IGNORE
messages (Section 3), handshake authentication is not broken.
Before the first step, we have C.Rcv = S.Snd. After the first
step, we have C.Rcv = S.Snd+ 1, but this manipulation is
not detected during the handshake. After the second step, we
have C.Rcv= S.Snd, and sequence numbers are back in sync.

It remains to be shown that the attacker can delete the mes-
sage from the channel, which requires knowledge about the
message’s length, and that its deletion does not affect the
MAC verification and decryption output for the following
messages. Both aspects require careful analysis with respect
to the used encryption mode, which will be given in Sec-
tion 4.3 and Section 4.4. Here, we conclude by describing a
straightforward generalization of the single message attack.

(NS,NC)-Prefix Truncation Attack. In a single attack, the
attacker can generally delete an arbitrary number of NS initial
messages sent from the server and NC initial messages sent
from the client. This is straightforward: Instead of inserting
one IGNORE message to the client before NEWKEYS, the
attacker inserts NS such messages to the client and NC to the
server. Consequently, instead of deleting the first message
from the server, the attacker deletes NS initial messages from
the server and NC initial messages from the client.

Note that the single message attack above is the specific
case of a (1,0)-prefix truncation attack.

4.3 Determining the Byte-Length of Messages
To successfully delete packets from the secure channel, the
attacker has to know their length. This is inherently true for en-
cryption modes that do not encrypt the packet length field (any
EtM mode, GCM). In the case of an encryption mode with
an encrypted packet length field (any EaM mode, ChaCha20-
Poly1305), the attacker may employ different strategies to
determine the packet’s length. One such strategy is to uti-
lize knowledge about the plaintext if the length of the first
few messages inside the secure channel is either fixed (for
example, SERVICEACCEPT) or can be measured within a sin-
gle connection ahead of time (for example, EXTINFO). This
approach was used for all attacks described here. More ad-
vanced strategies may exploit TCP segment sizes and timings,
as well as the message order of the SSH protocol. For exam-
ple, an attacker may delay all encrypted traffic by the server
until after the client’s SERVICEREQUEST message has been
processed to determine the length of the EXTINFO message.
Here, we assume that the attacker always knows the lengths.

4.4 Analysis of Encryption Modes
In this section, we analyze which encryption modes our at-
tacks affect and if they can be exploited in a real-world sce-
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Authenticated Encryption Mode Specification Enc. State Dec. State Affected Exploitable Ref.

Encrypt-and-MAC CBC [33] (IV , Snd) (IV , Rcv) ✗ # Section 4.4.1
CTR [33, 37] (ctr, Snd) (ctr, Rcv) ✗ # Section 4.4.1

Encrypt-then-MAC CBC [33, 36] (IV , Snd) (IV , Rcv) ✓ G# Section 4.4.3
CTR [36, 37] (ctr, Snd) (ctr, Rcv) ✓ G# Section 4.4.3

GCM [22] ctrInvocation ctrInvocation ✗ # Section 4.4.1

ChaCha20-Poly1305 [34] Snd Rcv ✓  Section 4.4.2

Table 1: Authenticated encryption modes, corresponding specification documents, and their exposure to prefix truncation in the
BPP of SSH. The initial value of state variables printed in bold purple can be chosen by the attacker, cf. Section 4.1. Full control
of either state enables perfect prefix truncation ( , ChaCha20-Poly1305). Partial control may lead to limited exploitability,
depending on the inner workings of the authenticated encryption mode (G#, Encrypt-then-MAC).

nario (see Table 1). An encryption mode is affected if, after
prefix truncation, all following packets on the secure channel
are decrypted, i.e., an AEAD mode does not generate the
distinguished symbol INVALID or a composed mode success-
fully verifies the MAC. Note that we allow decryption to a
different plaintext for probabilistic attacks. To capture this,
we define an encryption mode as exploitable for an attack
if the message stream after decryption is well-formed and
supports that attack. If the attack’s success probability is less
than 1, we say the attack has limited exploitability.

4.4.1 Not Affected

GCM. GCM [22] mode does not use the implicit sequence
number. Instead, it uses an invocation counter, initialized
to IVKDF, and incremented after each message. The authors
justify this by stating that the resulting nonce is always a
fixed offset from the sequence number. By deviating from the
SSH standard, GCM stops our attack, as the attacker cannot
manipulate the invocation counter during the handshake.

CBC-EaM and CTR-EaM. CBC uses IV chaining, and
CTR uses a key stream. When the attacker deletes any prefix
of the ciphertext in either mode, the first ciphertext block
received will be decrypted as pseudorandom. Because EaM
computes the MAC over the plaintext, MAC verification will
fail with a probability close to 1, thwarting our attack.

4.4.2 Affected And Perfectly Exploitable

ChaCha20-Poly1305. ChaCha20-Poly1305 [34] directly
uses the sequence number in its internal key stream derivation,
which makes it vulnerable to our prefix truncation attack.
All messages following the truncated prefix are decrypted
to their original plaintext because the integrity check of the
AEAD cipher is done over the ciphertext and the sequence
number, which the attacker has manipulated to match. Under
the assumption that the attacker can correctly guess the packet
length, the prefix truncation attack always succeeds.

Note that the fault is not with ChaCha20-Poly1305 as an
AEAD encryption scheme but with its integration into the
SSH secure channel construction.

4.4.3 Affected With Limited Exploitability

CTR-EtM. With CTR-EtM, the MAC is computed over the
unencrypted length, the sequence number, and the ciphertext.
So, removing some packets from the beginning of the channel
does not cause a MAC failure, and cryptographically, the at-
tack succeeds. However, CTR uses a block counter initialized
to IVKDF, which increments after each block. After prefix
truncation, the key stream is desynchronized, so all following
ciphertexts are decrypted as pseudorandom packets. Each
corrupted packet has a significant probability of causing a
critical failure, eventually stopping our attack.

Remark: Decryption Oracle for CTR-EtM Using Prefix
Truncation. For CTR-EtM, prefix truncation of k blocks
(which exactly contain one or more messages) provides a
very limited decryption oracle on the ciphertext c1, . . . ,ck
where ci := Enc(IVKDF + i)⊕ pi,1 ≤ i ≤ k. After deleting
the first k blocks, MAC verification for the following message
of length l blocks will succeed because the length, sequence
number, and ciphertext are correct. The blocks ck+1, . . . ,ck+l
will be decrypted as p′j := Enc(IVKDF + j)⊕ ck+ j,1 ≤ j ≤ l,
and processed as a pseudorandom SSH message SC1’. Due
to format oracle side channels in SSH at the BPP layer, e.g.,
the padding length, but also at the protocol layer, e.g., if a
message is ignored or triggers a response, the attacker can get
some information about the bits in p′j. This reveals informa-
tion about the first l key stream blocks, and thus also about
p1, . . . , pl , potentially leaking confidential information like
passwords in user authentication. If processing SC1’ does not
cause a critical failure, the attack can even continue, reveal-
ing more about the following key stream and, thus, plaintext.
Exploiting this requires a careful study of format oracles in
SSH, which is outside the scope of this work.
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CBC-EtM. With CBC-EtM, the MAC is computed from
the unencrypted length, the sequence number, and the cipher-
text. The IV is not required because IVKDF is implicit, and all
other IVs are authenticated before use. Consequently, prefix
truncation does not cause a MAC failure, and cryptographi-
cally, the attack succeeds. Nevertheless, we need to consider
the impact that IV chaining has on the immediately following
packet to see if this attack is practically exploitable.

Recall that the decryption of the first block is p1 :=
Dec(c1)⊕ IVKDF, and for block i, it is pi := Dec(ci)⊕ ci−1.
We assume the attacker uses prefix truncation to remove
blocks c1, . . . ,ck. The following block ck+1 will now be de-
crypted as p′1 := Dec(ck+1)⊕ IVKDF. We are interested in
how SSH implementations process the resulting pseudoran-
dom block p′1 as the first block in the decrypted packet. In-
tuitively, it should result in a corrupted packet that causes a
critical failure.2

Surprisingly, there is a significant probability that the attack
can continue, although it is highly implementation-dependent.
For a corrupted packet, there are four possible outcomes:

1. Critically Corrupt: If corruption is detected at the BPP
or application level, e.g., if a length field exceeds the
packet length, the connection should be closed.

2. Marginally Corrupt: If the packet happens to be similar
enough to the original, e.g., if the corruption is limited
to optional fields, it should be processed without error
and have the same effect as the original would have had.

3. Evasively Corrupt: If the packet is well-formed (i.e.,
has valid padding length) but has an unrecognized mes-
sage ID, an UNIMPLEMENTED response must be sent,
and the connection continues normally [33, Sec. 11.4].

4. Any other case not covered above, in particular, recog-
nized messages different from the original.

Clearly, the first outcome stops any attack from going for-
ward. However, the second, third, and fourth outcomes may
be beneficial for the attacker. We will now present two in-
structive scenarios for outcomes two and three, and estimate
the success probability of an attack relying on that outcome.
Later, we will verify these estimates experimentally.

Scenario 1: CBC-EtM Prefix Truncation Of a Single Mes-
sage, Second Message Has Format Flexibility. In this
scenario, the attacker wants to remove the first message, and
the second (corrupted) message needs to be functionally pre-
served but has some format flexibility. For example, the
second message might be SERVICEACCEPT (see Section 5.2),

2Similarly to CTR-EtM, any format oracle side channel for p′1 reveals a
relationship between IVKDF and pk+1 via IVKDF ⊕ pk+1 = ck ⊕ p′1, which is
a marginal information leak for the (secret) IV given information on pk+1,
and vice versa. Again, we do not explore this further here.

which is mandatory to start user authentication. The encrypted
part of the packet looks like this, where p is the padding
length, m is the message ID, and n is the service name length:

p m n Service Name

0e 06 00 00 00 0c s s h - u s e r a u

t h Random Padding

The probability that the first block decrypts exactly as shown
is only 2−128 for a 128-bit block cipher. However, for some
clients, the service name string is optional. These clients
accept a 1-byte message with p = 30 (0x1E) and m = 6 as
marginally corrupt, which has a success probability of 2−16,
independent of the block size.

Although SERVICEACCEPT may be a lucky case (for the
attacker), there are structural reasons for this result: First,
SSH messages are often short and can be smaller than a sin-
gle block. Second, the padding is random and cannot be
verified. Third, some messages have redundant fields that
implementations ignore (e.g., the service name above).

We experimentally verified that OpenSSH, Dropbear,
PuTTY, and libssh allow empty SERVICEACCEPT messages
from the server, enabling this attack. At the same time, Async-
SSH is strict by requiring the correct service name.

Scenario 2: CBC-EtM Prefix Truncation Attack On More
Than One Message. In this scenario, we assume the at-
tacker wants to remove the first N > 1 messages and preserve
all the following messages perfectly. Then, the attacker can
use prefix truncation to delete the first N −1 messages and
take a bet on the N-th message to be evasively corrupt.

Let ℓ be the length of the ciphertext of the N-th message,
with padding length p, message ID m, and random padding.
The attack succeeds regardless of the content of the corrupted
packet as long as it is well-formed and unrecognized: A
packet is well-formed if 4 ≤ p ≤ ℓ− 2 (accounting for the
padding length and message ID). A packet is unrecognized if
m is a message ID not known by the implementation.

Because the message is well-formed, it is not rejected at
the BPP layer. Furthermore, because the message is unrec-
ognized, the peer must respond with UNIMPLEMENTED and
otherwise ignore it [33, Sec. 11.4], so our attack succeeds.

The probability that a packet is well-formed depends on ℓ.
The padding length is between 4 and 255, and ℓ is a multiple
of max(8,block size), so the number of valid padding length
values is min(252, ℓ−5) out of 28.

The probability that a packet is unrecognized depends on
the size of the set U of unrecognized message IDs in the imple-
mentation. The attack requires at least one unknown message
ID. Through source code review, we identified 43 IDs that
are in active use, so we estimate up to 213 unknown message
IDs out of 28.

In total, we estimate a success probability of min(252, ℓ−
5) · |U | ·2−16. Assuming a block size of at least 128-bit (i.e.,
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ℓ ≥ 16), we estimate that the success probability of this at-
tack is between 11 · 2−16 ≈ 0.0002 (ℓmin = 16, |Umin| = 1)
and 252 ·213 ·2−16 ≈ 0.8190 (ℓmax ≥ 252, |Umax|= 213) for
vulnerable implementations. Our experiments show success
probabilities from 0.0003–0.8383, in good agreement with
our analysis (Section 5.2). Increasing the block size increases
the lower bound, while the upper bound stays the same.

5 Breaking SSH Extension Negotiation

While the fact that BPP does not implement a secure channel
is troublesome enough, exploiting this vulnerability requires
an analysis of the SSH protocol after the handshake, i.e., the
SSH authentication protocol.

As our attack achieves prefix truncation, it is natural to
ask which SSH messages can occur at the beginning of a
secure channel. Historically, the first messages exchanged
are SERVICEREQUEST and SERVICEACCEPT. Removing
either causes the connection to go stale, as the client will
not begin the user authentication. Then, our attack, while
cryptographically successful, fails at the application layer.

However, the SSH Extension Negotiation mechanism [9]
introduces a new message, EXTINFO, which can occur im-
mediately after NEWKEYS as the first message on the secure
channel. Some of the extensions that can be negotiated are
security-relevant, providing an attack surface for our prefix
truncation attack and raising its impact.

In this section, we will first describe SSH Extension Nego-
tiation and then demonstrate how an attacker can downgrade
the security of a connection by removing the EXTINFO mes-
sage from the secure channel in a prefix truncation attack.

5.1 SSH Extension Negotiation
Even though the original SSH RFCs were designed with ex-
tensibility in mind, they do not provide any mechanism to
negotiate protocol extensions securely. RFC 8308 [9] closes
this gap. The RFC describes a signaling mechanism enabling
extension negotiation, the extension negotiation mechanism
itself, and a set of initially defined extensions.

Support for extension negotiation is signaled as part of the
KEXINIT message. The structure of the message is not altered,
and the reserved field is not used to avoid compatibility issues.
Instead, each peer may include an indicator name within
the list of key exchange algorithms. The indicator name
differs depending on the role of the peer (ext-info-c vs.
ext-info-s) to avoid accidental negotiation.

Whenever a peer signals support for extension negotiation,
the other side may send an EXTINFO message as the first
message after NEWKEYS. Additionally, the server can send a
second EXTINFO later to authenticated clients to avoid dis-
closing extension support to unauthenticated clients. Each
EXTINFO message can contain several extension entries. Ne-
gotiation requirements are defined on a per-extension level.

RFC 8308 defines an initial set of four protocol extensions,
and vendors have proposed and implemented additional ex-
tensions. We detail those relevant to our attacks here.3

server-sig-algs [9] is a server-side extension that in-
forms the client about all supported signature algorithms when
using a public key during client authentication.
publickey-hostbound@openssh.com [35,36] is a server-

side extension to advertise support for host-bound public key
authentication, which deviates from public key authentication
by also covering the server’s host key. This allows the enforce-
ment of per-key restrictions when generating the signature
outside the SSH client (i.e., when using SSH Agent).
ping@openssh.com [36] is a server-side extension to ad-

vertise support for a transport-level ping message similar to
the Heartbeat extension in TLS [46].

5.2 Extension Downgrade Attack

We now show how the prefix truncation attack can be applied
to delete the EXTINFO message sent by the client, server,
or both parties without either noticing. Our attack differs
depending on the encryption mode. For ChaCha20-Poly1305,
we can use the basic attack strategy. For CBC-EtM, we show
two strategies to generate additional messages in the secure
channel so that the attacker can use the “evasively corrupt”
outcome of Scenario 2 in Section 4.4.3.

Impact. Successfully performing the extension downgrade
can directly impact the security level of the connection. Most
notably, the recently introduced keystroke timing countermea-
sures by OpenSSH 9.5 will remain disabled when the server
has not sent ping@openssh.com. Furthermore, stripping an
EXTINFO containing the server-sig-algs extension can
lead to a signature downgrade during client authentication, as
the client has to resort to trial-and-error instead.

Extension Downgrade for ChaCha20-Poly1305. The
downgrade attack for ChaCha20-Poly1305 against the client
is depicted in Figure 5a. It is identical to the single message
prefix truncation attack from Section 4.2, with EXTINFO now
taking the place of SC1 in Figure 2. If the attack should be
directed against the server instead, a (0,1)-prefix truncation
attack should be performed. This allows an attacker to delete
any EXTINFO sent immediately after NEWKEYS.

While the server may send a second EXTINFO just before
signaling successful client authentication, stripping the EXT-
INFO message sent after NEWKEYS renders most publicly
specified extensions unusable. This is because they are ei-
ther scoped to the authentication protocol, sent by the client
only, or must be sent by both parties to take effect. Solely

3We excluded the following extensions because we consider them unre-
lated to our attacks: no-flow-control, delay-compression, elevation,
global-requests-ok, ext-auth-info
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Figure 5: Variants of the extension downgrade attack for ChaCha20-Poly1305 and CBC-EtM.

the ping@openssh.com extension may be sent in the second
EXTINFO to enable keystroke timing countermeasures inside
the connection protocol. However, OpenSSH 9.5 does not
implement any facility to send a second extension negotiation
message. As shown in Section 7, extensions scoped to the
authentication protocol are the most common among SSH
servers on the internet by a significant margin.

Extension Downgrade for CBC-EtM. In Figure 5b, we
show how the attack can also work with CBC-EtM. Sup-
pose an attacker injects an UNKNOWN message to the server
after the server sends NEWKEYS and EXTINFO but before
the client’s NEWKEYS message (and also injects UNKNOWN
to the client to realign sequence numbers). In that case, the
server sends the response UNIMPLEMENTED as the second
message in the secure channel immediately after the EXTINFO
message. The attacker now wants to remove two messages
from the channel and can benefit from the “evasively corrupt”
in Scenario 2 in Section 4.4.3. The attacker removes EXT-
INFO from the secure channel, which causes the decryption
of the first block of UNIMPLEMENTED to become pseudo-
random. Because UNIMPLEMENTED messages are relatively
small (ℓ = 16 for AES), the upper estimate for the success
probability is only 11 ·213 ·2−16 ≈ 0.0358.

However, the success probability can be increased signifi-
cantly by exploiting the new ping extension in OpenSSH 9.5.

To make use of this, the attacker replaces the UNKNOWN mes-
sage sent to the server with a PING message containing at least
255 bytes of payload. As per specification, the server will
reflect this data in the PONG response. This yields ℓ≥ 264,
maxing out the probability of the packet being well-formed.
Consequently, the upper estimate for the success probability
is now 252 ·213 ·2−16 ≈ 0.8190.

Evaluation. We successfully evaluated the attack in
10,000 trials on ChaCha20-Poly1305 and CBC-EtM against
OpenSSH 9.5p1 and PuTTY 0.79 clients, connecting to
OpenSSH 9.4p1 (UNKNOWN only) and 9.5p1. For CBC-
EtM, our success rate in practice was 0.0003 (OpenSSH)
resp. 0.0300 (PuTTY), improved to 0.0074 (OpenSSH) resp.
0.8383 (PuTTY) when sending PING instead of UNKNOWN.

6 Message Injection Attacks on AsyncSSH

Going beyond the SSH specifications, we now demonstrate
how prefix truncation attacks can also be used to exploit
implementation flaws. Specifically, we target AsyncSSH,4 an
SSH implementation for Python with an estimated 60k daily
downloads.5 We present two attacks that exploit weaknesses

4https://github.com/ronf/asyncssh
5https://pypistats.org/packages/asyncssh
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Figure 6: Rogue Extension Negotiation Attack on AsyncSSH:
The MitM injects a malicious extension information message
before the key exchange completes and deletes the server’s
EXTINFO message to account for the change in sequence
numbers. This attack relates to the generic extension down-
grade attack in Section 5.2.

in handling unauthenticated messages during the handshake.
These attacks are enabled by prefix truncation and sequence
number manipulation.

Note that we describe these attacks only for ChaCha20-
Poly1305. Adjusting them for CBC-EtM is straightforward,
injecting appropriate IGNORE and UNKNOWN messages, but
requires some of the advanced techniques described in Sec-
tion 4.1. These advanced techniques only work against some
SSH implementations.

6.1 Rogue Extension Negotiation Attack
The rogue extension negotiation attack targets an AsyncSSH
client connecting to any SSH server sending an EXTINFO
message. The attack exploits an implementation flaw in the
AsyncSSH client to inject an EXTINFO message chosen by
the attacker and a prefix truncation against the server to delete
its EXTINFO message, effectively replacing it.

Impact. The attacker can replace the content of the
EXTINFO message. AsyncSSH clients support the
server-sig-algs and global-requests-ok extensions.
Hence, the attacker can try to downgrade the algorithm
used for client authentication by restricting the value of
server-sig-algs to a subset of those supported by the
server.

Attack Description. The attack is a variant of the extension
downgrade attack in Section 5.2, but instead of IGNORE, the
attacker sends a chosen EXTINFO packet to the client. Similar
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[…]

Figure 7: Rogue Session Attack on AsyncSSH: The MitM
injects a malicious authentication request before the hand-
shake is complete and deletes the client’s EXTINFO message
to account for the change in sequence numbers. By delay-
ing the authentication request sent by the client, the MitM
ensures that the malicious one is processed. Any additional
authentication requests are silently ignored.

to IGNORE, EXTINFO does not trigger a response from the
client. A correct SSH implementation should not process an
unauthenticated EXTINFO message. However, the injected
message is accepted due to flaws in AsyncSSH.

Evaluation. We successfully evaluated the attack against
AsyncSSH 2.13.2 as a client, connecting to AsyncSSH 2.13.2.

6.2 Rogue Session Attack
The rogue session attack targets any SSH client connecting
to an AsyncSSH server, on which the attacker must have a
shell account. The attack’s goal is to log the client into the
attacker’s account without the client being able to detect this.

Impact. With a successful attack, the attacker can gain com-
plete control over the remote end of the SSH session. The
attacker receives all keyboard input by the user, completely
controls the terminal output of the user’s session, can send
and receive data to/from forwarded network ports, and can
create signatures with a forwarded SSH Agent, if any. The
result is a complete break of the confidentiality and integrity
of the secure channel, providing a strong vector for a targeted
phishing campaign against the user. For example, the attacker
can display a password prompt and wait for the user to enter
the password, elevating the attacker’s position to a MitM at
the application layer and enabling impersonation attacks.
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Attack Description. The messages exchanged during the
attack are depicted in Figure 7. The attacker injects a chosen
USERAUTHREQUEST before the client’s NEWKEYS. This
request must be a valid authentication request containing
the credentials of the attacker. The attacker can use any
authentication mechanism that does not require exchang-
ing additional messages between client and server, such as
password or publickey. Due to a state machine flaw, the
AsyncSSH server accepts the unauthenticated USERAUTHRE-
QUEST message and defers it until the client has requested
the authentication protocol.

To avoid a race condition between the USERAUTHRE-
QUEST sent by the client and the USERAUTHREQUEST in-
jected by the attacker, the attacker delays the client’s USER-
AUTHREQUEST until after the server signals a successful
authentication in response to the injected USERAUTHRE-
QUEST. The AsyncSSH server silently ignores any additional
authentication request after a successful authentication.

To complete the attack, the attacker has to fix the sequence
numbers using one of two strategies (note that Figure 7 only
shows the first strategy):

• Suppose the client sends an extra message before SER-
VICEREQUEST. In that case, the attacker can delete that
message from the channel, effectively performing the
(0,1)-prefix truncation attack with USERAUTHREQUEST
instead of the usual IGNORE message.

• Alternatively, suppose the server sends an extra mes-
sage before SERVICEACCEPT. In that case, the attacker
can delete that message after injecting an additional UN-
KNOWN message to the client before NEWKEYS, trig-
gering an UNIMPLEMENTED response that is deleted.
This increases both C.Snd and C.Rcv, moving the send
count deficit from the client to the server.

Evaluation. We successfully evaluated the attack against
AsyncSSH 2.13.2 as a server, connecting to AsyncSSH 2.13.2
and OpenSSH 9.4p1.

7 SSH Deployment Statistics

To estimate the impact of the prefix truncation attacks, we
scan for the SSH servers preferring or supporting any affected
encryption mode. Similarly, to estimate the impact of the
extension downgrade attack, we scan for servers sending
EXTINFO messages.

Methodology. For scanning, we used ZMap [16] and
ZGrab2 [15] on port 22 of the entire IPv4 address space.
The scan was performed over two days in early October 2023,
totaling 15.164M SSH servers.

As ZGrab2 cannot capture SSH extensions, we performed
a complementary scan at the end of June 2023, using a custom

Cipher Family Preferred Supported

ChaCha20-Poly1305 8,739k 57.64% 10,247k 67.58%
AES-CTR 4,785k 31.56% 14,866k 98.04%
AES-GCM 1,219k 8.04% 10,450k 68.92%
AES-CBC 236k 1.56% 4,069k 26.84%
Other 147k 0.97% - -
Unknown / No KEXINIT 34k 0.23% - -

Total 15,164k 100%

Table 2: Preferred SSH cipher families as of October 2023.

tool, on a subset of 220 open ports. The scan covered a total
of 830k servers. All data relating to the use of extension
negotiation in SSH is sourced from this scan.

In SSH, the algorithm order of the client determines which
algorithm is preferred. However, we cannot scan for actual
client use. Assuming that servers and clients are bundled in
a single product and share algorithm preference and support,
we use the server’s lists as a surrogate, as was also done in [1].

Symmetric Encryption Algorithms. In Table 2, we show
the number of servers that prefer and support various encryp-
tion modes. A cipher is preferred if it is placed first in the list
of supported algorithms.

We find that, by far, the most preferred encryption cipher
is ChaCha20-Poly1305, with 57.64% listing this algorithm
first. This is followed by AES-CTR (31.56%) and, with some
distance, by AES-GCM (8.04%) and AES-CBC (1.56%).

Authenticated Encryption Modes. As non-AEAD ciphers
must be combined with a MAC, we also evaluate which
authenticated encryption modes the servers prefer and sup-
port. The numbers for the AEAD modes ChaCha20-Poly1305
(57.64%) and GCM (8.04%) are identical to those for encryp-
tion modes, as the MAC is already integrated. Preference
for CTR modes is split between a majority for CTR-EaM
(26.14%) and a minority for CTR-EtM (5.46%). Preference
for CBC modes is mostly CBC-EaM (2.37%), while prefer-
ence for CBC-EtM (0.09%) is marginal.

In summary, 63.2% of all servers prefer an authenticated
encryption mode affected by our attacks.

Looking at the support for authenticated encryption modes
vulnerable to our attacks, we find that 67.58% of all servers
support ChaCha20-Poly1305, while 17.24% support CBC-
EtM. In total, 71.6% support at least one affected mode.

SSH Extensions. We also looked at SSH extensions offered
by servers before user authentication; see Table 4. We can
see that 76.81% of all servers send the server-sig-algs
extensions to indicate support for better signature schemes
for client public key authentication. Furthermore, 8.8% send
the publickey-hostbound extension, improving security
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AE Mode Preferred Supported

ChaCha20-Poly1305 8,739k 57.64% 10,247k 67.58%
CTR-EaM 3,964k 26.14% 4,200k 27.70%
GCM 1,219k 8.04% 10,450k 68.92%
CTR-EtM 828k 5.46% 10,685k 70.46%
CBC-EaM 359k 2.37% 1,585k 10.46%
CBC-EtM 14k 0.09% 2,614k 17.24%
Other 2k 0.01% - -
Unknown / No KEXINIT 36k 0.24% - -

Total 15,164k 100%

Table 3: Distribution of supported authenticated encryption
modes as of October 2023.

Extension name Times Offered

server-sig-algs 637,466 76.81%
publickey-hostbound@ 73,040 8.80%
delay-compression 283 0.03%
no-flow-control 283 0.03%
global-requests-ok 283 0.03%

Table 4: SSH extensions offered by servers after the initial
handshake, @openssh.com abbreviated to @. Extensions sent
by servers upon successful client authentication are not in-
cluded.

for authentication using SSH agent. Both extensions provide
opportunities for downgrade attacks, as their absence can
weaken the strength of the authentication.

8 Suggested Countermeasures

As a stop-gap measure, the affected cipher modes can be
turned off. Widely supported alternatives are AES-GCM or
AES-CTR. However, the root cause analysis shows that the
underlying issues lie in the SSH specification. We therefore
suggest two changes to the specification.

Sequence Number Reset. Resetting sequence numbers to
zero when encryption keys are activated ensures that sequence
number manipulations during the handshake can no longer
affect the secure channel. Unfortunately, sequence number
reset is a major break in compatibility. To avoid connection
failures due to one-sided sequence number resets, we suggest
that an implementation signals the support for this counter-
measure by including an identification string in the list of
supported key exchange algorithms. The SSH extension ne-
gotiation mechanism is already employing this method. If
and only if both peers signal support for this countermeasure,
the sequence numbers will be reset.

In response to our findings, OpenSSH implemented this
behavior as part of their so-called “strict kex” countermeasure

[36, Sec. 1.10]. In addition to resetting sequence numbers,
“strict kex” mandates that unexpected or unknown messages
during the initial key exchange must lead to the connection’s
termination. An unexpected message in this context is any
message that is not strictly required for key exchange. “strict
kex” has since been adopted by various vendors to ensure
interoperability between SSH implementations.

Full Transcript MAC. Authenticating the full handshake
transcript, as seen by the client and server, can detect attempts
of handshake manipulation by a MitM attacker, including
sequence number manipulation through our techniques. It is
impossible to extend the scope of the existing exchange hash,
as the server signature is transmitted before the new keys
are taken into use. Therefore, any messages sent after the
key exchange but before NEWKEYS cannot be included. We
suggest that both peers send a MAC authenticating the entire
transcript at the start of the channel, similar to TLS Finished
messages. Signaling support should be done as above. How-
ever, the transcript must be carefully canonicalized. While
client and server messages are sequential, they can interleave
asynchronously, leading to transcript variations. Also, the pro-
tocol must be extended to define the algorithm, encoding, and
position of the transcript MAC. Thus, securing the handshake
is more complex than resetting the sequence number.

Relationship to Formal Proofs. Both countermeasures
have a common goal: Align the SSH standard with expecta-
tions for stateful encryption schemes from formal models for
the BPP presented in [1,4]. A sequence number reset achieves
this directly by initializing the sequence numbers to zero, as
in the models. On the other hand, verifying the full transcript
hash forces the sequence number in the stateful encryption
and decryption methods to be synchronized by the sender and
receiver. Although the sequence numbers are then not initial-
ized to zero, each pair is nevertheless initialized to a common
value out of the attacker’s control. The existing models could
then be adjusted in the following way: If TC,TS ∈ {0,1}∗ are
the (canonicalized) transcripts of the SSH handshake as seen
by the client and the server, and MCS,MSC : {0,1}∗ 7→ N are
functions counting the messages from the client to the server
and vice versa in a transcript, then sequence numbers in the
stateful encryption and decryption modes are initialized to:

C.Snd= MCS(TC), C.Rcv = MSC(TC),

S.Snd= MSC(TS), S.Rcv = MCS(TS).

Authenticating the transcript then ensures that TC = TS, and
thus C.Snd = S.Rcv and C.Rcv = S.Snd, before the first
messages in the secure channel are encrypted or decrypted.
Authenticating the handshake transcript has the added ben-
efit that the handshake could be analyzed in a “matching
conversations”-based security model [23, 24].
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Other Issues. We suggest that SSH specifies “end-of-
communication” messages to detect suffix truncation attacks.
Also, AsyncSSH should be hardened to disallow unauthenti-
cated, application-layer messages during the SSH handshake.
In response to our findings, the state machine of AsyncSSH
was improved in version 2.14.1 to mitigate our attacks.

9 Future Work

Formally, SSH BPP security was modeled as stateful decryp-
tion [1, 4, 40]. Implicitly, this state was associated with SSH
sequence numbers, and it was assumed that an adversary
could not manipulate this state. These models can be ex-
tended in two directions: (1) Include a broader definition of
state. By including chained IVs, key stream state, and GCM
invocation counters, these models can be used to show why
certain cipher modes resist our attacks and that they indeed
achieve INT-PST security. (2) Introduce a novel adversarial
query, ModifyState, to model the attacks described here.

Our attack combines weaknesses in the SSH handshake
with weaknesses in the encrypted channel. Earlier work an-
alyzed these separately, leading to small models. To find
our attack automatically, models of SSH for computer-aided
proofs could (1) model the handshake as well as the BPP to-
gether, (2) keep track of sequence numbers in the BPP, includ-
ing the handshake, which requires modeling integer numbers
that can overflow as the internal state, (3) model seemingly
unimportant messages like IGNORE, and (4) consider each
encryption mode separately. The properties to verify should
include strong security notions such as INT-aPTXT [17].

Applying state learning to implementations also has the po-
tential to find our attacks automatically in the future, although
it suffers from a combinatorial explosion in the number of
messages (see Section 5.1 in [28]). Messages like IGNORE
and EXTINFO need to be included in the alphabet to find our
attacks, and an active MitM attacker has to be considered.

10 Conclusion

We have shown that the complexity of SSHv2 has increased
over its 25 years of development to a point where the addition
of new algorithms and features has introduced new vulnerabil-
ities. The root cause analysis has shown that the potential for
our attacks was already present in the original specification.
Handshake transcripts were never fully authenticated, and
sequence numbers were never reset to 0. However, as new
authenticated encryption modes and extension messages were
added, these weaknesses grew into exploitable vulnerabilities.

We introduced novel sequence number manipulation and
prefix truncation attacks for secure channels, which invalidate
the INT-aPTXT [17] security of SSH BPP for certain ciphers.
We extended these vulnerabilities to real-world exploits like
disabling SSH extension negotiation. This yields novel in-

sights into the complex interplay between a practical security
mechanism (sequence numbers) and abstract security notions
(INT-PTXT vs. INT-CTXT, [6]).

Our close look at the extension negotiation mechanism
reveals its design weaknesses: First, sending EXTINFO is
optional even if both parties signal support for extension ne-
gotiation during the handshake. Second, EXTINFO cannot
be used to change the SSH handshake itself, e.g., to imple-
ment the countermeasures proposed in this paper. However,
it outperforms extension negotiation within the KEXINIT in
aspects of privacy as protocol extension can be negotiated
securely, i.e., privately, similar to encrypted extensions in
TLS 1.3. As a consequence, extension negotiation within the
KEXINIT should be strictly limited to extensions affecting
the SSH handshake. Protocol extensions affecting the user au-
thentication or application layer should be negotiated through
the extension negotiation mechanism.

Although we suggest backward-compatible countermea-
sures to stop our attacks, the security of the SSH protocol
could benefit from a redesign from scratch. The redesign
process could be inspired by that of TLS 1.3, which brought
implementers together with experts in protocol analysis and
formal verification [3]. This could simplify the protocol while
preserving and/or achieving desired security notions for SSH,
which may differ from those of TLS. For example, while the
privacy of client authentication and extension negotiation are
relatively new features for TLS, they are already present in
SSH and should thus be preserved in a redesign.
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A Artifact Appendix

A.1 Abstract
This document describes the artifacts to the USENIX Secu-
rity ’24 Publication Terrapin Attack: Breaking SSH Channel
Integrity By Sequence Number Manipulation.

Using these instructions, the evaluations of Sequence Num-
ber Manipulation (Sect. 4.1), Extension Downgrade Attack
(Sect. 5.2), Rogue Extension Attack (Sect. 6.1) and Rogue
Session Attack (Sect. 6.2) can be reproduced.

Also, the aggregation scripts for the internet scans are avail-
able and can be tested on a small subset of the samples.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The configuration uses the host network to allow (optional)
monitoring of the attack using Wireshark or other network
packet analysis tools on the loopback interface. During the
runtime of the evaluation, this makes the tested SSH server
and proof of concept (PoC) available to all systems with ac-
cess to the local network (TCP bind to 0.0.0.0, ports 2200
and 2201). Reviewers should take care to isolate the test
system from the internet, for example using a firewall.

A.2.2 How to access

The artifacts are publically available at https:
//github.com/RUB-NDS/Terrapin-Artifacts/tree/
9907c80fa7e4184a29ceac352947ea51a49dce6a.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

• Linux or MacOS.6 No specific distribution or version
is required. We used Manjaro (rolling release in March
2024) and MacOS 14.4 (Sonoma).

• Bash shell interpreter (typically included in the above).
No specific version is required. We used bash 5.2.26 and
3.2.57.

• Docker Engine or Docker Desktop. While Docker En-
gine suffices and is typically included in Linux distribu-
tions, Docker Desktop is a separate install on MacOS.
No specific version is required. We used Docker En-
gine 25.0.3 and Docker Desktop 4.28.0.

• Wireshark (optional), for network packet analysis.
6Windows WSL might work but is untested and not supported.

A.2.5 Benchmarks

None.

A.3 Set-up
All required Docker images are built on demand when the
evaluation scripts are executed, so no setup is required.

The TCP ports 2200 and 2201 should be free and available.
This is the case by default on many systems. Some systems
might require a configuration of the firewall to allow the test
servers to bind 0.0.0.0 on these ports. On some systems,
the firewall will show a pop-up dialog when the first server
starts up, requiring manual confirmation.

A.3.1 Installation

Linux: Install the Docker engine under a supported Linux
distribution by following the instructions available at https:
//docs.docker.com/engine/install/.

MacOS: Install Docker Desktop available at https://www.
docker.com/products/docker-desktop/.

A.3.2 Basic Test

The following scripts build all required Docker images and
can be used as a basic functionality test. It will also be called
by all evaluation scripts, so this step is optional.

1 $ impl/build.sh
2 [+] Building 2.0s (15/15) FINISHED
3 [...]
4 => => naming to docker.io/terrapin-artifacts/openssh-

↪→ server:9.4p1
5 [...]
6 $ pocs/build.sh
7 [...]

The output shows the progress on downloading base images
and building the evaluation images. If there is no output, all
docker images are already built.

A.4 Evaluation workflow
A.4.1 Major Claims

We evaluated our attacks against several clients using an
OpenSSH 9.5p1 (C1, C2) or AsyncSSH 2.13.2 (C3, C4)
server. For an overview of the expected outcomes, see also Ta-
ble 5.
(C1): Sequence Number Manipulation (Sect. 4.1). We

verified all techniques successfully against PuTTY 0.79.
Additionally, our experiments show that OpenSSH 9.5p1
recognizes a rollover of sequence numbers and termi-
nates the connection, thus not affected by any technique
but RcvIncrease. AsyncSSH 2.13.2 and libssh 0.10.5 al-
low for RcvIncrease but terminate the connection due to
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C1 RcvIncrease ✓ - ✓ ✓ ✓ ✓
C1 RcvDecrease ✓ - R ✓ T T
C1 SndIncrease ✓ - R U T T
C1 SndDecrease ✓ - R U T T

C2 ChaCha-Poly ✓ ✓ ✓ - - -
C2 CBC-EtM

- UNKNOWN 0.0300 0.0003 0.0003 - - -
- PING 0.8383 - 0.0074 - - -

C3 Rogue Extension - - - - ✓ -

C4 Rogue Session - - - - ✓ -

- Not evaluated.
✓ Attack succeeds.
R Client terminates the connection (rollover).
T Client terminates the connection (timeout).
U Client terminates the connection (UNKNOWN message).

Table 5: Expected outcomes for attacks against clients

handshake timeouts before any advanced technique con-
cludes. Dropbear 2022.83 disconnects on UNKNOWN
messages instead of responding with UNIMPLEMENTED
but allows Rcv to roll over, therefore being affected by
RcvIncrease and RcvDecrease only.

(C2): Extension Downgrade (Sect. 5.2). We successfully
evaluated the attack in 10,000 trials on ChaCha20-
Poly1305 and CBC-EtM against OpenSSH 9.5p1 and
PuTTY 0.79 clients, connecting to OpenSSH 9.4p1
(UNKNOWN only) and 9.5p1. For CBC-EtM, our suc-
cess rate in practice was 0.0003 (OpenSSH) resp. 0.0300
(PuTTY), improved to 0.0074 (OpenSSH) resp. 0.8383
(PuTTY) when sending PING instead of UNKNOWN.

(C3): Rogue Extension Negotiation (Sect. 6.1). We suc-
cessfully evaluated the attack against AsyncSSH 2.13.2
as a client, connecting to AsyncSSH 2.13.2.

(C4): Rogue Session Attack (Sect. 6.2). We successfully
evaluated the attack against AsyncSSH 2.13.2 as a server,
connecting to AsyncSSH 2.13.2.

Internet Scan (Sect. 7) We are also including sample data,
aggregated data, and evaluation scripts on the Internet scan.

A.4.2 Experiments

The evaluation scripts (in the directory scripts) are inter-
active and self-describing. Some of them have several out-
put files. In that case, the files (as described below) are all
opened in the text file viewer less at the same time, requir-
ing keyboard-based navigation to see all of the results. As a

Shortcut Description

q Quit
h Help
S Wrap long lines on/off
/ Search
:n Next file
:p Previous file

Table 6: Common keyboard shortcuts of less.

gentle introduction to less, see Table 6 for a quick reference
of useful keyboard shortcuts.
(E1): test-sqn-manipulation.sh [≈ 1 − 3 hours per

client/variant combination]: Run one of the four se-
quence number manipulation attacks to prove (C1).
RcvIncrease is very fast; the others can be slow.
Execution: After starting the script, choose a client, one
of the four attack options, and input the manipulation
offset N. To prove (C1), input N = 1.
Results: The attack is complete once the progress bar
fills. After that, there will be an error message because
the secure channel is broken, as the script does not im-
plement any prefix truncation to complete the attack.

(E2a): test-ext-downgrade.sh [≈ 1 minute]: Run the ex-
tension downgrade attack to prove (C2) for ChaCha20-
Poly1305.
Execution: After starting the script, choose an arbitrary
client and server combination. Afterward, choose attack
variant 1 to select ChaCha20-Poly1305.
Results: The script will conclude by opening the fol-
lowing files simultaneously in less:

1. diff of files 3 and 4
2. diff of files 5 and 6
3. Server log (unmodified connection)
4. Server log (tampered connection)
5. Client log (unmodified connection)
6. Client log (tampered connection)
7. PoC proxy log

Navigate to the second file. The file compares the out-
put of the selected SSH client in the case of an ex-
tension downgrade attack to the output of an unmod-
ified connection. The diff will indicate the presence of
SSH_MSG_EXT_INFO and absence of SSH_MSG_IGNORE
in the unmodified connection only, thus proving (C2) for
ChaCha20-Poly1305.

(E2b): bench-ext-downgrade.sh [≈ 1−2 hours per clien-
t/variant combination]: Run the extension downgrade
attack 10,000 times to prove (C2) for CBC-EtM
(UNKNOWN and PING).
Execution: After starting the script, choose between
UNKNOWN and PING variants of the attack, then select
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between OpenSSH and PuTTY client. A progress bar
will show the current trial.
Results: After finishing all trial connections, the num-
ber of successful trial runs will be outputted to the con-
sole. The relative success rate will be close to the values
claimed in (C2), thus proving the functionality and suc-
cess probability claims in (C2) in the case of CBC-EtM.

(E3): test-asyncssh-rogue-ext-negotiation.sh [≈ 1
minute]: Run rogue extension attack to prove (C3).
Execution: The attack is automatic.
Results: The script will conclude by opening a set of
seven files in less. Refer to the results of (E2a) for a
list of files opened. Navigate to the second file. The
diff will indicate the presence of the server-sig-algs
extension with an attacker-chosen value in the tampered
connection, thus proving (C3).

(E4): test-asyncssh-rogue-session-attack.sh [≈ 1
minute]: Run the rogue session attack to prove (C4).
Execution: The attack is automatic.
Results: The script will conclude by opening a set of
seven files in less. Refer to the results of (E2a) for a list
of files opened. Navigate to the first file. The diff will
indicate successful authentication for the victim (unmod-
ified connection) and attacker (tampered connection),
respectively. Afterward, navigate to the second file and
examine the output of each client connection at the end
of the file. In the unmodified connection, the server will
respond with the username victim, while in the attacked
connection, the server will respond with the username
attacker. This proves (C4).

(E5): scan_util.py [≈ 1 minute]: Run the script to aggre-
gate a set of zgrab2 scan results. Note that this script
is in the sub-directory scans. Without the full data, we
can not prove the statistics in our paper. However, we
can demonstrate how we aggregated the scan results and
classified the algorithms.
Execution: Build the docker image by running the fol-
lowing command inside the scans directory:

1 $ docker build . -t terrapin-artifacts/scan-util

Now aggregate the sample.json file which can be
found in the sample sub-directory by running the fol-
lowing command inside the scans directory:

1 $ docker run --rm -v ./sample:/input terrapin-
↪→ artifacts/scan-util evaluate -i /input/
↪→ sample.json -o /input/sample-ae.acc.json

Results: The aggregation result will become avail-
able as sample-ae.acc.json inside the sample sub-
directory. The total number of clients, status and ver-
sion distribution, offered key exchange algorithms, com-
ment strings, and other evaluation criteria will match the
data present within the sample.json file. Also, there
is no difference between the sample-ae.acc.json and

sample.acc.json files (aside from the evaluation start
and end timestamps).

A.4.3 Troubleshooting

Address already in use. If an attack script is interrupted,
some docker containers may not be cleaned up properly, block-
ing the server port permanently or for the duration of TIME-
WAIT (1 min. on Linux, 30 sec. on MacOS).

Please follow these steps in this case:

1. Run the script cleanup-system.sh. This will stop and
remove any pending Docker containers.

2. If the problem persists, wait for up to 4 minutes.

System Reset. To fully clean up the Docker containers and
images, you can run cleanup-system.sh --full.

A.5 Notes on Reusability
The proof-of-concept code (pocs/) has been kept short for
simplicity and is thus not modularized for reusability. How-
ever, the artifacts may serve as a template for other MitM
attacks on network protocols like SSH.

The Docker files for the evaluated SSH implementations
(impl/) may be generally useful in other research on SSH.

Improvements to Wireshark for better dissection of SSH
protocols (not included in these artifacts) have been submitted
and accepted upstream and will be available in a future version
of Wireshark.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.
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